Properties of Morphological Dilation in Max-Plus and Plus-Prod Algebra in Connection with the Fourier Transformation

نویسندگان

چکیده

Abstract The basic filters in mathematical morphology are dilation and erosion. They defined by a structuring element that is usually shifted pixel-wise over an image, together with comparison process takes place within the corresponding mask. This made grey value case means of maximum or minimum formation. Hence, there easy access to max-plus algebra and, change, also theory linear algebra. We show approximation function forms commutative semifield (with respect multiplication) corresponds again limit case. In this way, we demonstrate novel logarithmic connection between Fourier transform slope transformation. addition, prove fast depends only on size used. Moreover, derive bound above which yields results exact terms quantisation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Max-Plus algebra on tensors and its properties

In this paper we generalize the max plus algebra system of real matrices to the class of real tensors and derive its fundamental properties. Also we give some basic properties for the left (right) inverse, under the new system. The existence of order 2 left (right) inverses of tensors is characterized.

متن کامل

Max-plus algebra

The max-plus semiring Rmax is the set R∪{−∞}, equipped with the addition (a, b) 7→ max(a, b) and the multiplication (a, b) 7→ a + b. The identity element for the addition, zero, is −∞, and the identity element for the multiplication, unit, is 0. To illuminate the linear algebraic nature of the results, the generic notations +, , × (or concatenation), 0 and 1 are used for the addition, the sum, ...

متن کامل

Linear Projectors in the max-plus Algebra

In general semimodules, we say that the image of a linear operator B and the kernel of a linear operator C are direct factors if every equivalence class modulo C crosses the image of B at a unique point. For linear maps represented by matrices over certain idempotent semifields such as the (max,+)-semiring, we give necessary and sufficient conditions for an image and a kernel to be direct facto...

متن کامل

Cyclic jobshop problem and (max,plus) algebra

In this paper, we focus on the cyclic job-shop problem. This problem consists in determining the order of a set of generic tasks on machines in order to minimize the cycle time of the sequence. We propose an exact method to solve this problem. For each solution, a linear max-plus model (possibly non causal) is obtained. To evaluate the performance of a considered schedule, we build the causal m...

متن کامل

Max-plus algebra models of queueing networks

A class of queueing networks which may have an arbitrary topology, and consist of single-server fork-join nodes with both infinite and finite buffers is examined to derive a representation of the network dynamics in terms of max-plus algebra. For the networks, we present a common dynamic state equation which relates the departure epochs of customers from the network nodes in an explicit vector ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Imaging and Vision

سال: 2023

ISSN: ['0924-9907', '1573-7683']

DOI: https://doi.org/10.1007/s10851-022-01138-3